Sumber: Berita Iptek Topik: Teknologi Tags: produksi methana, Reaktor Biogas
Pada bagian kedua ini akan dikemukakan beberapa komponen utama reaktor biogas dan contoh penerapannya secara sederhana. Penulis berharap reaktor biogas ini merupakan salah satu solusi praktis teknologi energi yang mudah dan murah untuk masyarakat kecil di tanah air.
Beberapa komponen utama reaktor biogas
Saluran slurry masuk
Campuran kotoran hewan (sapi atau kambing) dan air yang membentuk slurry dimasukkan melalui saluran masuk slurry. EPA USA 2002 (Prometheus, 2005) menyarankan agar reaktor biogas menggunakan slurry dengan kandungan padatan maksimal sekitar 12.5%.
Campuran kotoran hewan (sapi atau kambing) dan air yang membentuk slurry dimasukkan melalui saluran masuk slurry. EPA USA 2002 (Prometheus, 2005) menyarankan agar reaktor biogas menggunakan slurry dengan kandungan padatan maksimal sekitar 12.5%.
Dalam tataran praktis, Aguilar dkk (2001) menyarankan perbandingan 1 ember (ukuran standar) kotoran hewan dicampur dengan 5 ember air. Kotoran hewan dan air harus dimasukkan sudah dalam keadaan tercampur (slurry) - hal ini untuk memudahkan pengaliran slurry di dalam tangki utama serta menghindari terbentuknya sedimentasi yang akan menyulitkan pengaliran selanjutnya.
Slurry bisa dimasukkan hingga 3/4 volume tangki utama (Garcelon dkk). Volume sisa di bagian atas tangki utama diperlukan sebagai ruang pengumpulan gas serta menghindari penyumbatan saluran gas oleh slurry.
Karena proses produksi methana ini berlangsung dalam lingkungan anaerob, maka slurry harus menutup saluran masuk ataupun saluran keluar tangki utama. Pada umumnya, produksi gas methana yang optimum akan terjadi pada HTR 20 30 hari (Garcelon dkk). Hal ini berarti harus diperkirakan bahwa slurry akan berada selama 20 30 hari di dalam reaktor.
Dengan mengetahui volume tangki utama dan harga HTR yang dipilih, akan dapat ditentukan banyaknya penambahan slurry setiap harinya. Untuk reaktor yang baru beroperasi, disarankan untuk membiarkan reaktor selama beberapa hari sebelum kemudian dilakukan pengisian slurry secara rutin setiap hari. Jumlah slurry yang perlu dimasukkan setiap hari dapat dihitung dengan menggunakan persamaan di bawah ini:
Persamaan 1
dengan mslurry adalah penambahan slurry per-hari [Liter/hari], D adalah diameter tangki utama [m], h adalah tinggi/panjang tangki utama [m], dan HTR adalah hydraulic retention time [20-30 hari]. Sedangkan untuk setiap liter slurry, batasan EPA yang menyarankan kandungan padatan sebesar maksimal 12.5% dapat dijadikan patokan untuk menghitung massa kotoran hewan yang diperlukan.
Saluran residu keluar
Bila aliran di dalam tangki cukup lancar (tidak ada sumbatan) maka kesetimbangan tekanan hidrostatik slurry akan menyebabkan sebagian residu keluar manakala slurry ditambahkan ke saluran masuk tangki utama. Bila slurry pertama ditambahkan setelah n hari (<20 hari), maka residu yang keluar pertama kali hanya memiliki HTR sebesar n hari. Ini berarti residu awal belum secara sempurna dicerna oleh reaktor.
Bila aliran di dalam tangki cukup lancar (tidak ada sumbatan) maka kesetimbangan tekanan hidrostatik slurry akan menyebabkan sebagian residu keluar manakala slurry ditambahkan ke saluran masuk tangki utama. Bila slurry pertama ditambahkan setelah n hari (<20 hari), maka residu yang keluar pertama kali hanya memiliki HTR sebesar n hari. Ini berarti residu awal belum secara sempurna dicerna oleh reaktor.
Namun di sisi lain, residu terakhir dari slurry tahap awal akan memiliki HTR sebesar HTR + n hari. Dengan demikian, mengendapkan slurry selama satu minggu (7 hari), dan selanjutnya melakukan pengisian slurry harian menggunakan harga HTR = 20 hari akan memberikan harga HTR = 27 hari untuk residu terakhir dari slurry tahap pertama. Residu keluaran reaktor biogas ini merupakan nilai tambah dari reaktor karena bisa digunakan sebagai pupuk berkadar nutrisi tinggi (Karim dkk, 2005).
Katup pengaman tekanan
Prinsip kerja katup ini adalah: pipa T mampu menahan tekanan di dalam saluran gas setara dengan tekanan kolom air pada pipa T tersebut (lihat Gambar 2-bagian pertama). Bila tekanan di dalam saluran gas lebih tinggi dari tekanan kolom air, maka gas akan keluar melalui pipa T, sehingga tekanan di dalam sistem reaktor akan kembali turun. Bila tinggi air yang masuk di dalam pipa T adalah h, maka tekanan yang bisa ditahan pipa T adalah:
Prinsip kerja katup ini adalah: pipa T mampu menahan tekanan di dalam saluran gas setara dengan tekanan kolom air pada pipa T tersebut (lihat Gambar 2-bagian pertama). Bila tekanan di dalam saluran gas lebih tinggi dari tekanan kolom air, maka gas akan keluar melalui pipa T, sehingga tekanan di dalam sistem reaktor akan kembali turun. Bila tinggi air yang masuk di dalam pipa T adalah h, maka tekanan yang bisa ditahan pipa T adalah:
p = pgh (2)
dengan p adalah tekanan [Pa], p adalah densitas air [sekitar 1000 kg/m3 pada temperatur dan tekanan standar], g adalah percepatan gravitasi [9.81 m/s2].
Tinggi air yang perlu masuk di dalam pipa T tersebut harus disesuaikan dengan kekuatan tekanan yang sanggup ditahan konstruksi reaktor (termasuk kantung penyimpan gas). Ini terutama penting untuk bahan reaktor yang terbuat dari kantung polyethylene (polyethylene bag).
Untuk reaktor yang terbuat dari kantung polyethylene, Aguilar dkk (2001) menyarankan tinggi air di dalam pipa T sebesar 8-10 cm, sedangkan Rodriguez dkk menyarankan harga 4-5 cm. Semakin tinggi kolom air di dalam pipa T, maka makin besar tekanan di dalam reaktor yang bisa ditahan katup pengaman; ini akan memberikan tekanan gas methana keluar yang lebih tinggi. Namun penggunaan tekanan tinggi ini perlu disesuaikan dengan kekuatan reaktor biogas. Untuk reaktor yang menggunakan bahan kantung polyethylene, disarankan untuk menggunakan harga kolom air sekitar 5-10 cm.
Perlu dicatat bahwa bila kedua saluran slurry masuk dan keluar selalu berada dalam kondisi terbuka, maka pergerakan kolom air di dalam pipa T juga akan mempengaruhi pergerakan slurry di dalam reaktor. Bila densitas slurry diperkirakan sebesar 2 kali densitas air, tekanan yang menyebabkan pergerakan 8 cm kolom air di dalam pipa T juga akan menyebabkan perbedaan ketinggian permukaan slurry di dalam reaktor dan di dalam pipa saluran masuk/keluar sebesar 4 cm (muka slurry di saluran masuk/keluar lebih tinggi 4 cm daripada muka slurry di dalam reaktor).
Oleh karena itu disarankan untuk menggunakan pipa saluran slurry masuk/keluar yang memungkinkan permukaan slurry di dalam saluran pipa masuk/keluar bisa lebih tinggi dari permukaan slurry di dalam reaktor. Pengukuran densitas slurry dapat dilakukan secara sederhana dengan menggunakan ember yang telah diketahui volumenya (V) (dalam liter). Bila massa slurry pada satu ember tersebut adalah ms [kg], maka densitas slurry dapat dihitung dengan cara:
Persamaan 3
Harga densitas slurry ini (Persamaan (3)) dapat digunakan untuk memperkirakan perbedaan ketinggian muka slurry di dalam reaktor dan pipa saluran masuk/keluar dengan menggunakan Persamaan (2).
Separator
Separator di dalam reaktor biogas (lihat Gambar 1-bagian 1) memiliki fungsi untuk mengarahkan aliran slurry di dalam reaktor sehingga dapat dipastikan bahwa setiap bagian slurry akan berada di dalam reaktor selama masa HTR. Untuk membantu kelancaran aliran slurry di dalam reaktor, maka disarankan untuk menggunakan slurry dengan kandungan padatan yang sesuai dengan rekomendasi EPA USA (maksimal sekitar 12.5%).
Separator di dalam reaktor biogas (lihat Gambar 1-bagian 1) memiliki fungsi untuk mengarahkan aliran slurry di dalam reaktor sehingga dapat dipastikan bahwa setiap bagian slurry akan berada di dalam reaktor selama masa HTR. Untuk membantu kelancaran aliran slurry di dalam reaktor, maka disarankan untuk menggunakan slurry dengan kandungan padatan yang sesuai dengan rekomendasi EPA USA (maksimal sekitar 12.5%).
Bila slurry terlalu banyak mengandung padatan, dikhawatirkan akan terjadi sedimentasi yang cukup tebal yang diprediksi bisa mengganggu kelancaran aliran slurry selanjutnya. Pengadukan bisa dilakukan untuk menghindarkan terjadinya sedimentasi (endapan) di dalam reaktor. Pengadukan bisa dilakukan secara teratur setiap selang waktu tertentu. Selain berfungsi untuk menghindarkan terjadinya sedimentasi, pengadukan pada slurry dengan kandungan padatan sekitar 10% akan meningkatkan produksi gas di dalam reaktor cukup signifikan (Karim dkk, 2005).
Oleh karena itu disarankan untuk membuat sistem pengaduk yang terintegrasi dengan bangunan reaktor. Sistem pengaduk bisa menggunakan tenaga listrik ataupun manual. Namun mengingat prinsip kesederhanaan reaktor skala kecil/menengah, disarankan untuk membuat sistem pengaduk manual.
Saluran gas
Gas dari reaktor biogas ini bersifat korosif (Aguilar dkk, 2001), maka saluran gas disarankan dibuat dari bahan polymer (bisa berupa pipa PVC ataupun selang PVC dengan sambungan yang cukup kuat). Bahan transparan lebih disukai untuk saluran gas (terutama pada bagian horizontal) karena penguapan cairan di dalam reaktor serta hasil reaksi dari dalam reaktor akan berpotensi menyebabkan genangan air yang bisa menyebabkan penyumbatan saluran gas.
Gas dari reaktor biogas ini bersifat korosif (Aguilar dkk, 2001), maka saluran gas disarankan dibuat dari bahan polymer (bisa berupa pipa PVC ataupun selang PVC dengan sambungan yang cukup kuat). Bahan transparan lebih disukai untuk saluran gas (terutama pada bagian horizontal) karena penguapan cairan di dalam reaktor serta hasil reaksi dari dalam reaktor akan berpotensi menyebabkan genangan air yang bisa menyebabkan penyumbatan saluran gas.
Untuk keperluan pembakaran gas pada tungku, maka pada bagian ujung saluran pipa bisa disambung dengan pipa baja anti karat (berbentuk serupa nosel). Bila tekanan gas di dalam kantung penyimpan gas (untuk konstruksi fixed dome) sudah cukup tinggi atau posisi floating drum sudah cukup terangkat, maka katup bukaan gas bisa dibuka, dan gas bisa dinyalakan untuk keperluan memasak. Reaktor baru biasanya bisa menghasilkan cukup gas untuk memasak setelah 20 30 hari, sesuai dengan HTR yang umum digunakan (Aguilar dkk (2001), Rodriguez dkk). Untuk memenuhi kebutuhan memasak sebuah keluarga dengan jumlah anggota 6 orang, diperlukan 6 ekor sapi dengan volume reaktor biogas 8.4 m3 (IGAD).
Reaktor biogas sederhana
Salah satu batasan (constraint) utama dalam mendesain biogas untuk masyarakat di pedesaan adalah masalah biaya instalasi, kemudahan pengoperasian serta perawatan. Reaktor biogas jenis fixed dome yang dibuat dari bahan tembok dan beton umumnya memerlukan biaya yang tidak murah (BSP, 2003).
Oleh karena itu, beberapa aplikasi reaktor biogas di negara ketiga menggunakan bahan yang lebih murah dan mudah didapat, seperti kantung (tubular) polyethylene (Aguilar dkk, 2001), (Rodriguez dkk), (Moog dkk, 1997), (An dkk), atau material plastik lainnya, seperti Silpaulin (BSP, 2003).
Reaktor biogas dari kantung polyethylene ini pada dasarnya tergolong reaktor jenis fixed dome. Reaktor dengan volume slurry 4 m3 akan memerlukan kantung polyethylene berdiameter 80 cm dengan panjang 10 m (80% dari kantung akan berisi slurry) (Rodriguez dkk). Kantung polyethylene diposisikan horizontal (sekitar 90% badan reaktor berada di bawah permukaan tanah). Skema reaktor kantung polyethylene bisa dilihat pada Gambar 3 berikut ini:
Gambar 3. Skema reaktor biogas kantung polyethylene
Fungsi dan karakteristik komponen reaktor biogas kantung polyethylene ini sama dengan reaktor fixed dome yang telah dijelaskan pada Gambar 1. Dengan demikian, katup pengaman tekanan sederhana seperti pada Gambar 2 juga perlu ditambahkan pada saluran gas keluar.
Untuk memperkuat daya tahan reaktor ini, umumnya kantung polyethylene dipasang 2 lapis dan di bagian atas reaktor dipasang atap sederhana untuk melindungi konstruksi reaktor dari panas matahari dan hujan. Dengan konstruksi semacam itu, reaktor kantung polyethylene bisa digunakan hingga 3 tahun (Rodriguez dkk) bahkan 10 tahun (Aguilar dkk, 2001). Kerusakan yang umumnya terjadi pada reaktor jenis ini adalah sobeknya lapis polyethylene dan ketidaklancaran aliran slurry di dalam reaktor akibat sedimentasi.
Kesimpulan
Reaktor biogas merupakan salah satu solusi teknologi energi untuk mengatasi kesulitan masyarakat akibat lonjakan harga BBM di tanah air. Teknologi ini bisa segera diaplikasikan; terutama untuk kalangan masyarakat pedesaan yang memelihara hewan ternak (sapi, kerbau, atau kambing).
Teknologi reaktor ini telah cukup lama dikembangkan di berbagai negara, baik negara maju ataupun berkembang, dengan hasil yang cukup baik. Bagi masyarakat pengguna, reaktor biogas ini akan menghasilkan dua keuntungan sekaligus, yakni berupa bahan bakar gas (untuk memasak) serta pupuk berkualitas tinggi.
Reaktor biogas yang terbuat dari bahan polyethylene cocok diterapkan untuk masyarakat kecil mengingat murahnya biaya instalasi serta kemudahan dalam pengoperasian serta perawatan. Penggunaan reaktor biogas juga memberikan kontribusi positif bagi lingkungan (berupa pengurangan polusi gas methana, bau tidak sedap, potensi penyakit, dsb).
Referensi
1. An, BX., Preston, TR., Dolberg, F., The Introduction of Low-Cost Polyethylene Tube Biodigesters on Small-Scale Farms in Vietnam,
http://www.epa.gov/agstar/resources/ smldigesters.html
2. Aguilar, FX., (2001), How to install a polyethylene biogas plant, Proceeding of the IBSnet Electronic Seminar, (The Royal Agricultural College, Cirencester, UK. 5-23 March 2001), http://www.ias.unu.edu/proceedings/icibs/ibs/ibsnet/e-seminar/ FranciscoAguilar/index.html
3. Biogas Support Program (BSP), (2003), Construction option for RABR Remote Area Biogas Reactor, SNV-Nepal
4. Garcelon, J., Clark, J., Waste Digester Design, Civil Engineering Laboratory Agenda, University of Florida, http://www.ce.ufl.edu/activities/waste/wddndx.html
5. Karim, K., Hoffmann, R., Klasson, T., Al-Dahhan, MH., (2005), Anaerobic digestion of animal waste: Waste strength versus impact of mixing, Bioresource Technology, 96, 1771-1791
6. Moog, FA., Avilla, HF., Agpaoa, EV., Valenzuela, FG., Concepcion, FC., (1997), Promotion and utilization of polyethylene biodigester in smallhold farming systems in the Philippines, Livestock Research for Rural Development, Volume 9, Number 2.
7. Rahman, B., (2005), Biogas, Sumber Energi Alternatif, Kompas 8 Agustus.
8. Raven, RPJM., Gregersen, KH., (2005), Biogas Plant in Denmark: Sucesses and Setbacks, Renewable and Sustainable Energy Reviews, Article in Press
9. Rodriguez, L., Preston, TR., Biodigester installation manual, University of Tropical Agriculture Foundation. Finca Ecologica, University of Agriculture and Forestry, Thu Duc, Ho Chi Minh City, Vietnam http://www.fao.org/WAICENT/FAOINFO/AGRICULT/AGA/AGAP/
FRG/Recycle/biodig/manual.htm
10. Wikipedia, (2005), http://en.wikipedia.org/wiki/Anaerobic_digester
11. Prometheus, (2005), http://www.prometheus-energy.com/digester.html
12. Intergovernmental Authority on Development (IGAD), Biogas Digester, http://igadrhep.energyprojects.net/Links/Profiles/
Biogas/Biogas.htm
1. An, BX., Preston, TR., Dolberg, F., The Introduction of Low-Cost Polyethylene Tube Biodigesters on Small-Scale Farms in Vietnam,
http://www.epa.gov/agstar/resources/ smldigesters.html
2. Aguilar, FX., (2001), How to install a polyethylene biogas plant, Proceeding of the IBSnet Electronic Seminar, (The Royal Agricultural College, Cirencester, UK. 5-23 March 2001), http://www.ias.unu.edu/proceedings/icibs/ibs/ibsnet/e-seminar/ FranciscoAguilar/index.html
3. Biogas Support Program (BSP), (2003), Construction option for RABR Remote Area Biogas Reactor, SNV-Nepal
4. Garcelon, J., Clark, J., Waste Digester Design, Civil Engineering Laboratory Agenda, University of Florida, http://www.ce.ufl.edu/activities/waste/wddndx.html
5. Karim, K., Hoffmann, R., Klasson, T., Al-Dahhan, MH., (2005), Anaerobic digestion of animal waste: Waste strength versus impact of mixing, Bioresource Technology, 96, 1771-1791
6. Moog, FA., Avilla, HF., Agpaoa, EV., Valenzuela, FG., Concepcion, FC., (1997), Promotion and utilization of polyethylene biodigester in smallhold farming systems in the Philippines, Livestock Research for Rural Development, Volume 9, Number 2.
7. Rahman, B., (2005), Biogas, Sumber Energi Alternatif, Kompas 8 Agustus.
8. Raven, RPJM., Gregersen, KH., (2005), Biogas Plant in Denmark: Sucesses and Setbacks, Renewable and Sustainable Energy Reviews, Article in Press
9. Rodriguez, L., Preston, TR., Biodigester installation manual, University of Tropical Agriculture Foundation. Finca Ecologica, University of Agriculture and Forestry, Thu Duc, Ho Chi Minh City, Vietnam http://www.fao.org/WAICENT/FAOINFO/AGRICULT/AGA/AGAP/
FRG/Recycle/biodig/manual.htm
10. Wikipedia, (2005), http://en.wikipedia.org/wiki/Anaerobic_digester
11. Prometheus, (2005), http://www.prometheus-energy.com/digester.html
12. Intergovernmental Authority on Development (IGAD), Biogas Digester, http://igadrhep.energyprojects.net/Links/Profiles/
Biogas/Biogas.htm
Tidak ada komentar:
Posting Komentar